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Abstract

Identifying scientific articles related to a spe-
cific feature is crucial for most researchers and
students. The field of Natural Language Pro-
cessing (NLP) has long been interested in this
task. Different Information Extraction (IE)
pipelines have been developed for this purpose.
Most of them adopt a similar approach. They
first extract mentions associated with specific
entities such as tasks, materials, metrics, and
methods. Then, they arrange them into coref-
erence clusters. Lastly, they establish relation-
ships between these clusters. This article aims
to show some of the unresolved issues with that
approach, by focusing on an already existing
pipeline: SciREX. To achieve this, it was first
necessary to set up their methodology, to which
a few minor modifications were implemented.
By analyzing the results, three structural prob-
lems were identified: (1) A difficulty in ex-
tracting materials correctly. (2) A coreference
model biased by overmuch character similar-
ity. (3) A relation extraction model that has
difficulties extracting valid relationshipsin

1 Introduction

It is recognized that the number of scientific arti-
cles published each year is increasing considerably.
A study conducted by the United Nations Educa-
tional, Scientific and Cultural Organization (Lewis
et al., 2021) reports a 21% increase in the num-
ber of publications between 2015 and 2019. This
growth is even more significant in the field of ar-
tificial intelligence (AI) with an increase of 44%.
It has therefore become problematic to follow the
evolution of research in a field. Extracting and
visualizing relevant information within scientific
articles has become a key issue. Some notable ap-
plications like Semantic Scholar1 already provide
several features in this direction. These include

1Semantic Scholar

paper summarization with their TLDRs (Too Long;
Didn’t Read) models, citation classification which
is specifically beneficial for their highly influential
citations classes and research feeds recommenda-
tions that provide a practical way to solve the issue
of publication growth. Other types of applications,
such as PubMed2 or PapersWithCode3 (PwC) pro-
vide specialized research tools in a field. PubMed
concentrates on medical and biological topics. It
has the advantage of linking the article content with
the medical ontology Medical Subject Headings
(MeSH)4. PwC concentrates on the computer sci-
ence domain and aims to gather code repositories,
articles, datasets and evaluation tables in a unique
page. A little-known but no less relevant solution
is NLP-progress5. It is a leaderboard that aims to
follow the state-of-the-art of applications in NLP.
It is updated by a community of researchers in the
field and has the advantage of sorting its content
by language. Recently, the NLP community has
started working on extracting and relating different
entities in articles. Attention was placed on four
types of entities: Task, Dataset, Metric and Method
(TDMM). Several projects have attempted to de-
velop a pipeline capable of accomplishing this task.
The main objective behind being to use the results
of the pipeline to build knowledge graphs (KG).

The primary motivation for this article was to ex-
plore the alternative possibilities offered by TDMM
pipelines. It was scheduled to attempt to integrate a
Language entity using the already existing Named
Entity Recognition (NER) model of Schweter and
Akbik (2020). By adding a Language - Material
relationship, it would have been possible to au-
tomate the creation of a leaderboard like that of
NLP-progress. Another objective was to seek a so-

2PubMED
3Papers With Code
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lution to reveal the missing relationships between
the entities. For example, highlighting the fact that
an adequate Method has never been used on a Task
can represent a significant asset for research. To
achieve these goals, finding an already existing
pipeline was necessary. After some research, it was
apparent that the work of Jain et al. (2020) and the
SciREX model acceptably corresponded to these
tasks. As other works did previously, this pipeline
is divided into three distinct components: Mention
Extraction (ME), Coreference Resolution (CR) and
Relation Extraction (RE). The ME component con-
sists of extracting mentions related to entities by
implementing a span classifier. The CR component
is used to group mentions belonging to the same
entity type using binary classification probability
and clustering. Lastly, the RE component classifies
the relation between these entities as valid or not.
While experimenting with these three components,
several structural issues were detected that caused
the results to be unsatisfactory. The motivation of
this article has therefore become to analyze these
issues to apprehend them and propose a solution.
The contributions of this article can be summarized
as follows:

1. Highlighting issues in mention extraction of
material entities, attributed to annotational
complexity.

2. Pointing towards the existence of character
similarity biases present in pairwise corefer-
ence model.

3. Revealing a significant imbalance in the re-
sults of the classification model for binary re-
lations.

2 Related work

Many researchers have experimented with auto-
matic information extraction from scientific articles.
Early on, works like Tsai et al. (2013) and Gábor
et al. (2016) proposed an unsupervised approach
to extract concepts and relations from scientific
literature. With the SemEval 2017 (Augenstein
et al., 2017) and SemEval 2018 (Gábor et al., 2018)
datasets, IE on scientific papers has taken a new
direction by introducing Task, Material, Process
entities and their relations. Several deep learning
approaches have experimented with these datasets
(Ammar et al., 2017, Luan et al., 2017, Augenstein
and Søgaard, 2017).

As already explained, this type of model is
broadly divided into three subtasks: ME, CR and
RE. Earlier work (Clark and Manning, 2016, Wise-
man et al., 2016, Lee et al., 2017, Adel and Schütze,
2017) has concentrated on attempting to improve
CR and has proven that it is a well-understood task.
More recent work focuses on ME: Hou et al. (2021)
introduces a dataset (TDMSci) annotated with Task,
Dataset and Metric entities. This dataset is com-
posed of 2,000 sentences of articles from the Asso-
ciation for Computational Linguistics (ACL). It has
been annotated by NLP experts, and they reported
an inter-annotator agreement score of 0.842 using
Fleiss’ k value. Several deep learning models have
been experimented on this dataset. They achieved
their best results using flair BiLSTM-CRF (Akbik
et al., 2018) with an f-score of 0.63. Zaratiana et al.
(2022) recent work demonstrates that state-of-art
Hierarchical Transformer Model (HNER) outper-
formed other models on most scientific mention ex-
traction datasets. This includes TDMSci on which
they obtained an f-score of 0.678.

Regarding RE, it is a challenging task that many
works attempt to solve by doing it jointly with the
entity extraction task (Katiyar and Cardie, 2017
Zhang et al., 2017, Zheng et al., 2017, Adel and
Schütze, 2017). Jia et al. (2019) proposed an at-
tractive solution to extract relations at document-
level by developing a novel technique called Para-
graph Embedding. They evaluated the performance
of the model on a standard biomedical dataset
of drug-genemutation interactions in scientific ar-
ticles. They demonstrated their models outper-
formed other work on this task.

Other works have approached the task as a whole.
Luan et al. (2018) introduced a brand new dataset:
SciERC. It is composed of 500 abstracts from 12
conferences/workshops proceedings on AI. They
defined six entity types (Task, Method, Metric, Ma-
terial, Other-ScientificTerm and Generic) and seven
relationship types (Compare, Part-of, Conjunction-
Of, Evaluate-for, Feature-of, Used-for, Hyponym-
Of). They reported an Inter-Annotator Agreement
(IAA) kappa score of 0.769 for entity mentions,
0.638 for coreferences and 0.678 for relations.
They also designed a SciIE pipeline by implement-
ing the three components already defined (ME, CR,
RE) in a single unit. They achieved this by treating
each sub-component as a classification problem to
which they provided a representation of the spans
computed by a BiLSTM. The SciERC dataset and



the SciIE pipeline are close to what SciREX offers
and which was used for this article. The following
section will present in detail the contents of the
SciREX dataset.

3 SciREX Dataset

The SciREX dataset is made of 438 scientific arti-
cles sampled from PwC. It has been annotated with
four different properties: Entity mentions, Coref-
erence Relationships, Coreference cluster saliency,
and N-ary relations. They report an IAA of 0.95
cohen-k score on a sample of five documents be-
tween their annotators. They did not report IAA
for each annotation layer.

3.1 Entity mention

They annotated mentions for four types of entities:
Task, Material, Metrics and Methods. Because the
SciREX guidelines6 do not define properly each en-
tity type, we take the definitions from SciIE which
should be similar.
Task: Applications, problems to solve, systems
to construct. E.g. information extraction, machine
reading system, image segmentation, etc.
Material: Data, datasets, resources, Corpus,
Knowledge bases. E.g. image data, speech
data, stereo images, bilingual dictionary, para-
phrased questions, CoNLL, Panntreebank, Word-
Net, Wikipedia, etc.
Metric: Metrics, measures, or entities that can
express the quality of a system/method.E.g. F1,
BLEU, Precision, Recall, ROC curve, mean recip-
rocal rank, mean-squared error, robustness, time
complexity, etc.
Method: Methods, models, systems to use or
tools, components of a system, frameworks. E.g.
language model, CORENLP, POS parser, kernel
method, etc.

Entity mentions are stored as a list of spans for
each document. A span contains the position of the
start and the end token of the mention as well as the
entity type of the mention. E.g. for the text ”Lorem
ipsum dolor sit amet”, a span (1, 3, T) represents
the mention ”ipsum dolor” of type T

3.2 Coreference Resolution and Saliency

They annotated the coreference relationships be-
tween each mention to produce clusters of mentions
belonging to the same entity type. They also an-
notated the saliency of coreference clusters, which

6SciREX guidelines on GitHub

means they decided whether a mention cluster is
related to the main topic of the article. In this ex-
periment, saliency classification has been put aside
because the primary objective is not to summarize
the content of an article. Coreference clusters are
stored as a dictionary of key labels associated with
a list of span values. Spans contain the position of
the start and the end tokens of the mention but not
the type of the mention. It can be easily retrieved
by using the list of mentions of the same document.
E.g. For a coreference labeled C, the dictionary {C
: [(1, 3), ... ]} represent the coreference cluster of
C

3.3 N-ary relation

They annotated 4-ary relations between clusters
of different entity types. Relations are stored in a
list of dictionaries for each document. Each dic-
tionary contains the four types of entities as keys
and a coreference cluster as values. When a re-
lation only connects three types of entities, they
add a dummy cluster to complete the 4-ary rela-
tion. E.g. For a Task A, a Material B, a Metric C
and a Method D, the dictionary {’Task’:’A’, ’Ma-
terial’:’B’, ’Metric’:’C’, ’Method’:’D’} represents
the 4-ary relation between them

This experiment only works on binary relation-
ships. To do this, each 4-ary was ”unfolded” into
six sub-relations between each entity pair.

3.4 Dataset partition

SciREX is already split into 3 subsets: Train, Test
and Dev. Tables 1 and 2 show the distribution of
layers of annotation within the different sets. It is
clear that the mentions and the co-references are
evenly distributed, which is excellent for training
the model. However, relations have a more hetero-
geneous distribution, which was expected as it is
unlikely to find a balance for this type of layer by
taking a random sample.

4 Method

SciREX additionally provides a three-component
pipeline for solving tasks. Because the primary
objective of this article was not to propose a new
one, the implementation used for the experiment
contains few differences. They are all summarized
in figure 3 where SciREX represents the baseline
pipeline and SciREX+ this paper pipeline. They
are also explained in the following sections.

https://github.com/allenai/SciREX/blob/master/Annotation%20Guidelines.pdf


Material Method Metric Task

Train
Mentions 7,454 6.9% 67,464 62.5% 10,744 9.9% 22,335 20.7%
Coref 558 32.20 % 465 26.83 % 382 22.04 % 328 18.93 %

Dev
Mentions 1,519 6.5% 14,717 63% 2,294 9.8% 4,835 20.7%
Coref 145 39.08 % 79 21.29 % 75 20.22 % 72 19.41 %

Test
Mentions 1,642 6.4% 16,277 63.7% 2,294 9% 5,356 20.9%
Coref 114 31.67 % 89 24.72 % 84 23.33 % 73 20.28 %

Full
Mentions 10,615 6.8% 98,458 62.7% 15,332 9.8% 32,526 20.7%
Coref 817 33.16 % 633 25.69 % 541 21.96 % 473 19.20 %

Table 1: Size and ratio in percent for every type of entity for the different sets

Training Development Testing

Task/Material 858 185 181
16.89 % 18.76 % 18.34 %

Task/Metric 606 137 130
11.93 % 13.89 % 13.17 %

Task/Method 497 100 91
9.78 % 10.14 % 9.22 %

Material/Metric 1128 231 246
22.20 % 23.43 % 24.92 %

Material/Method 1238 188 189
24.37 % 19.07 % 19.15 %

Metric/Method 754 145 150
14.84 % 14.71 % 15.20 %

Table 2: Size and ratio in percent for every type of relation for the different sets

4.1 Mention Extraction

The SciREX solution to this task is to use a BIOUL
based Conditional Random Field (CRF) Sequence
tagger fed with a BERT-BiLSTM Embedding. A
more advanced solution was provided by the HNER
model (Zaratiana et al., 2022) which outperforms
other models on two scientific benchmarks. It con-
sists of adding a Word-level layer between the Em-
bedding layer and the CRF layer. A word level
layer takes the first subword of each word in the
previous layer and encodes their interaction with
a single-layer transformer (Vaswani et al., 2017).
The addition of this layer provides a better represen-
tation of the sequence labeling. The HNER model
was used for this experiment.

4.2 Coreference Resolution

This step could be divided into two tasks. The
first one consists in calculating for each pair of
mentions of the same entity type a pairwise corefer-
ence score. The second consists in clustering men-
tions by using their pairwise coreference scores.
SciREX solution computes coreference score by

training a binary classifier on each pair of men-
tions. They build their classification model using a
feed forward linear layer fed with a BERT Embed-
ding. They compute the classification probability
by using the softmax function. This probability
is used as pairwise coreference score for the pair
of mentions. To perform clustering, they used an
agglomerative hierarchical clustering from Ward Jr
(1963) and silhouette score from Rousseeuw (1987)
to determine the clusters numbers. According to
their code and contrary to what they report in their
paper, SciREX seems to use a default BERT em-
bedding for the pairwise classification whereas this
experiment used the SciBERT embedding.

4.3 Binary Relation Classification
This task involves generating a combination of two
entities (eg, a Task and a Material) under the as-
sumption that these are related and then, this hy-
pothesis is tested to determine if the relation is
valid or not. The solution implemented in SciREX
is based on Jia et al. (2019). It consists of: For a
relation R = (C1, C2) where Ci = mi1, ...,mij is
a cluster of mentions which belongs to the same



entity. It encodes this relation into a single vector
by computing for all paragraphs P = P1, ...Pp an
embedding EpCi and aggregates them to construct
the document representation of the relation R. Para-
graph embedding Ep

Ci
is done by using a Bi-LSTM

layer on each paragraph and concatenating hidden
states of mention by using either max-pooling or
logsumexp. Relation embedding is computed by
using a feed forward linear layer as a concatena-
tion method such that Ep

R = FFN([Ep
C1;E

p
C2]).

Finally, the classification is made by feeding the
document-level representation ER to a Feed For-
ward Linear Layer with a sigmoid function applied
to results to compute probability. ER is the mean
of each paragraph-level representation such that
ER = 1

|P |
∑|P |

p=1E
p
R. SciREX default model used

maxpooling to concatenate the hidden states of the
mentions and a sigmoid function to calculate the
last layer probability, but following Jia et al. (2019)
recommendations, this experiment uses logsum-
exp for the concatenation and a softmax function
for the probability. Logsumexp can be defined
as: logsumexp(x1, ..., xk) = log

∑k
i=1 exp(xi)

This is a smooth version of max-pool that better
represents the weaker signals expressed by some
mentions.

5 Experiment

All models were trained with a maximum of 10
epochs using the early exit algorithm from Pytorch
Lightning7 with a patience of 5. Dataset splits
(train, dev, test) are the same as the SciREX orig-
inal ones and the dev f-score was used to trigger
early exit. Adam optimizer was used in order to
supervise training with a starting learning rate of
2e-5. For the CR and RE models, only a part of the
invalid peers is used during training. This sampling
is done by calculating the probability that a pair
is valid in the training set and randomly choosing
invalid pairs to keep based on this probability. This
part is essential to solve the imbalance issue be-
tween valid and invalid peers. The ME and CR
models were trained 10 times with different ran-
dom parameters to ensure their consistency. Due
to high GPU memory requirements, the RE model
was trained only once.

5.1 Metrics
ME: MUC Metrics from the workshop of Chinchor
and Sundheim (1993) were used during the valida-

7Pytorch lightning

tion steps and for the final evaluation. NEREvalu-
ate package8 was used to compute those metrics.
CR: Common precision, recall and f-score were
used for the binary classification part and SciREX
custom evaluation metric for clustering.
RE: Common precision, recall, f-score.

6 Results

Figure 1: Confusion matrix of mention extraction
model. Rows represent the gold labels and columns the

predicted labels.

Figure 2: Confusion matrix of mention extraction
model by using the second most likely label. Rows
represent the gold labels and columns the predicted

labels.

6.1 Mention Extraction

As Table 4 shows, SciREX+ slightly outperforms
SciREX. It can be explained by the use of the

8nervaluate on GitHUb
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ME SciREX SciBERT BiLSTM CRF tagger
SciREX+ SciBERT BiLSTM WordLvl layer CRF Tagger

CR SciREX BERT Binary Classifier Agglomerative Hierarchical Clustering
SciREX+ SciBERT Binary Classifier Agglomerative Hierarchical Clustering

RE SciREX SciBERT Paragraph Embbeding MaxPooling Sigmoid
SciREX+ SciBERT Paragraph Embbeding LogSumExp Softmax

Table 3: Differences between the SciREX and the SciREX+ models

Model Precision Recall F-Score
min mean max min mean max min mean max

Mention Extraction
SciREX - 0.707 - - 0.717 - - 0.712 -
Paperjam 0.705 0.717 0.728 0.726 0.736 0.745 0.715 0.726 0.738

Coreference Resolution (Pairwise)
SciREX - 0.861 - - 0.852 - - 0.856 -
SciREX+ 0.942 0.946 0.947 0.943 0.947 0.951 0.942 0.946 0.950

Coreference Resolution (Clusters)
SciREX - 1.000 - - 0.984 - - 0.987 -
SciREX+ 0.942 0.988 1.000 0.536 0.952 1.000 0.696 0.967 0.999

Binary Relation Extraction
SciREX - 0.820 - - 0.440 - - 0.570 -
SciREX+ - 0.657 - - 0.698 - - 0.670 -

Table 4: Precision, Recall, F-Score statistics are evaluated on the test set of the 10 random training runs of the
Paperjam (PJ) models compared to the result of SciREX models. PJ Binary Relation Classification mean value

corresponds to the only completed run. The mean value of the SciREX models corresponds to the reported results
in their paper

HNER architecture. Precise results by entity can be
observed in Table 5, which shows that the Method
entity generally outperforms other entities. Mate-
rial also has a less convincing f-score when com-
pared to the other entity types. Because SciREX
experiments do not report results by entity, it is dif-
ficult to say if the issue comes from the SciREX+
implementation. The TDMsci experiment raises
the same issue with several distinct models on their
Dataset entity type. Looking a little closer into
SciREX annotations revealed some mistakes and
inconsistencies in Material mentions as in Figure 6.
There is also sometimes ambiguity in determining
whether an entity is a material or a task. This fre-
quently happens with workshops where their name
can be employed to refer either to a material or a
task. An example of this type of ambiguity is the
word SciREX itself which can refer to the dataset
or the pipeline used on the dataset. Figures 1 and
2 deliver a partial explanation of the issue. Figure
1 represents the confusion matrix of the model. It
is explicit that the confusion lies between the inter-
mediate tokens of Material (I-Material). The value

of the [I-Material, O] cell is higher than the values
of the other [x, O] cells, and the values of the other
[I-Material, x] cells are all extremely low. Figure
2 shows the same confusion matrix but using the
second most likely label according to the model.
By adding the values of [I-Material, I-Material] of
the two matrices, we obtain a score higher than
0.80 which indicates the model is not completely
wrong.

6.2 Coreference Resolution

Differences between the performance of the two
models for Pairwise Coreference shown in Table 4
can be explained by the different base embedding
used. It should also be noticed that False pairs
outperform a little True pairs with a mean f-score
of 0.968 versus a mean f-score of 0.848. Because
many coreference pairs are identical or practically
identical words: we used the Levenshtein ratio,
which measures the character similarity between
two strings, to provide a more in-depth assessment
of the model performance. For a given threshold
(T ) we kept only pairs (a, b) of the test set that



Model Precision Recall F-Score
min mean max min mean max min mean max

Task 0.662 0.682 0.704 0.667 0.677 0.695 0.665 0.679 0.693
Material 0.478 0.484 0.492 0.552 0.561 0.567 0.511 0.520 0.526
Metric 0.721 0.733 0.748 0.653 0.660 0.678 0.680 0.694 0.705
Method 0.716 0.753 0.790 0.774 0.783 0.796 0.762 0.768 0.771

Table 5: Precision, Recall and F-Score statistics of the 10 random runs of the Paperjam model for each entity type.

had a Levenshtein ratio (L) greater or equal to the
threshold. We progressively increased the thresh-
old (by 0.05) and plot the result as Figure 3 shows.
Thus we see how the model performs when i varies
over N for Ai = {(a, b) | L[(a, b)] ≥ T + 0.05i}.
Similarly, for pairs where the Levenshtein ratio is
less than the threshold value for each successive
iteration, we have Figure 4. Several observations
can be made: For Figure 3 even if the starting value
is more than expected, True pairs f-score increase
when the threshold increases. The F-score of False
pairs significantly decreases when the threshold
reaches 0.95. It means that the model has difficul-
ties identifying False pairs that have a really close
Levenshtein ratio. For Figure 4, we can clearly see
that the model is biased by the proximity between
the two words of the pair. Performance is under 0.5
until the Levenshtein ratio becomes greater than
0.95. The good results of the global model evalua-
tion are explained by the fact that most of the true
pairs have a really close Levenshtein distance (Fig-
ure 5 show that 90% of pairs have a Levenshtein
distance greater than 0.95).

Coreference Clustering results (Table 4) show
a significant inconsistency related to the random
parameter of the model. The minimum Recall of
the Paperjam model is 0.536 versus a maximum of
1.000 and a mean of 0.952. Further investigation
shows that only one of the runs reaches such a low
performance. Because SciREX did not process
several runs (or did not report such results) it is
difficult to deduce if the issue comes from SciREX+
implementation or if it is more general.

6.3 Binary Relation Classification

Major differences in results (Table 4) could be ex-
plained by the use logsummax or by the use of soft-
max to compute probability. The weighted perfor-
mance does not reveal the performance imbalance
between valid and invalid pairs with an F-Score of
0.8 for valid and 0.3 for invalid. A solution from
Jia et al. (2019) which has not been tested on this

Figure 3: F-score evolution of coreference pairs with
respect to the positive Levenshtein ratio. L(a, b) > T .
Each line represents a class (True or False).

Figure 4: F-score evolution of coreference pairs with
respect to the positive Levenshtein ratio. L(a, b) < T .
Each line represents a class (True or False).

experiment should be to gather the result of differ-
ent models trained on different levels of embedding
such as document, paragraph or sentence.

7 Further work

Improving Dataset: This experience shows there
are still problems to solve on already existing
datasets like SciREX. In particular, problems ex-
tracting mentions from Material replaced one of
the primary motivations for this article. Adding the
Language entity and trying to link it to the Material
entity could have represented a significant contri-
bution to the field of NLP. The creation of a new



Figure 5: Ratio of the number of pair sampled for
L(a, b) > T

dataset centered on NLP papers employing these
models for a first automatic labeling is one of the
solutions that we have explored. We started doing
this work on a subsample of SciREX including 68
articles also present in the ACL anthology. To ex-
tract the languages, we used the NER trained on
OntoNotes (Schweter and Akbik, 2020). Annota-
tion is currently midway through, and we are still
struggling to stay consistent on the material.

Binary Relation Classification: This is a chal-
lenging task and this article has failed to solve it
properly. There are still improvement possibili-
ties as showcased in the results section. There is
also another type of more complex model: Neural
Transition-based Model. It consists in predicting
the transition sequence from an initial configura-
tion to a terminal configuration. Relations can be
derived from these transitions. Initially, this type of
model was primarily implemented in POS tagging
(Chen and Manning, 2014), but in recent years its
scope has widened, as for example the extraction
of relations between arguments (Bao et al., 2021).

Annotation Tool: To visualize and correct dif-
ferent results of the models we use the open source
annotation tool INCEpTION9 . As seen in Figure 7,
given that there are several chains and relations and
that they both go across the document, the interface
is cluttered and hardly readable, making correction
a difficult process. The lack of adapted tools to
perform such correction slows down considerably
work on complex relation tasks. Developing a tool
specialized in the annotation of this kind of doc-
ument could be an important contribution to the
NLP community.

9Project INCEpTION on Github

8 Conclusion

In this paper, we presented the results and issues
encountered after training several models on the
SciREX dataset to perform three tasks: Mention
Extraction, Coreference Resolution and Binary Re-
lation Classification. The result analysis lead us
to two observations: (1) Material entity is hard to
define and after taking a closer look at the dataset
we could find some annotation inconsistencies. (2)
There is a character similarity bias in coreference
resolution models. (3) Binary relations classifi-
cation using paragraph embedding and document-
level representation produces unbalanced results
on valid and invalid relationships. This leads us to
conclude that finding a large and robust dataset to
perform a specific task is extremely complicated.
Furthermore, using a non-symbolic model requires
sustained involvement in the evaluation to under-
stand the main issues of the model and solve them.
In addition, we also provided an analysis of the
ecological impact of the training of our models.

https://inception-project.github.io/


8.1 Ecological Impact

All training runs were performed on Grid5000 clus-
ters which provide a tool to monitor power con-
sumption. We recovered the energy consumption of
10 runs of the ME model, 10 runs of the CR model
and 1 run of the RE model. Table 6 shows the con-
sumption of these runs. By using this Wikipedia
article10, we calculated that the power consump-
tion of these runs is equivalent to 84 inhabitants of
France or 182 inhabitants of the world during its
total training time, which is 5 days and 15 hours.
Note that these runs are not the only ones we car-
ried out. For example, after discovering a problem
during the validation of the ME model, we restarted
about ten executions without monitoring the energy
consumption. In total, monitored runs account for
two-thirds of our total Grid5000 usage. Note also
that even if the RE model had been trained only
one time, the results provided in the table would be
multiplied by 10 to make comparison easier. This
is interesting because even if this model requires a
large amount of GPU memory (> 32 giga) it con-
sumes significantly less energy compared to the
other models. This is easily explained by the du-
ration of the training which is less than 2 hours,
due to the smaller size of the training data. On the
other hand, the CR model is trained with a large
amount of data and the training duration is more
12h in average which also explains the high energy
consumption.

Model kWh
ME 13.967
CR 50.157
RE 0.010
All 64.134

Table 6: Power consumption for this experiments in
kWh compared to power consumption of inhabitant in

some country/region
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Figure 6: Mistakes in the gold annotation



Figure 7: INCEpTION interface screenshot.


